

Welcome to ReDATA’s documentation!

Overview

This ReadTheDocs landing page provides general documentation for software pertaining
to ReDATA [https://arizona.figshare.com], the University of Arizona Research Data Repository. ReDATA is a
Figshare for Institution instance that is managed by Figshare, our third-party
Software-as-a-Service (SaaS) vendor.

The GitHub repository is available here [https://github.com/UAL-RE/redata-docs/].

All ReDATA-related repositories are under the GitHub organization (UAL-RE) [https://github.com/UAL-RE/] of
Research Engagement, University of Arizona Libraries.

Unless indicated, all software are under an MIT License.

Contents:

	Repositories Overview
	Repositories purposes

	Repositories details

	Repositories status

	Project Management
	An Overview

	DevOps workflow

	Branching

	Pushing to a remote branch

	Versioning and tagging

	Merging code

	Milestone tracking

	Status of GitHub repositories

	Identity and Access Management
	IAM Overview

	Software/Services Overview

	Services

	Software

	Grouper settings

Indices and tables

	Index

	Search Page

Repositories Overview

Repositories purposes

	Our codebases fall in one of six categories:
	
	Common/general software used throughout ReDATA codebases

	Documentation

	Identity and access management (IAM)

	Data curation

	Data preservation

	Infrastructure as Code (IaC)

	Software name

	Category

	Purpose

	LD-Cool-P [https://github.com/UAL-RE/LD-Cool-P]

	Curation

	Python command-line API for data curation

	ReBACH [https://github.com/UAL-RE/ReBACH]

	Preservation

	Software to support data preservations with Dart and other tools

	ReQUIAM [https://github.com/UAL-RE/ReQUIAM]

	IAM

	Python command-line API for IAM

	ReQUIAM_csv [https://github.com/UAL-RE/ReQUIAM_csv]

	IAM

	Python programs and CSV files for ReQUIAM

	figshare [https://github.com/UAL-RE/figshare]

	Curation,
Preservation

	A forked copy of cognoma’s [https://github.com/cognoma/figshare] repository used to gather
public/private data from Figshare API

	ldcoolp-figshare [https://github.com/UAL-RE/ldcoolp-figshare]

	Curation

	Python backend API for access to the Figshare API for Figshare for
Institutions instances

	redata-commons [https://github.com/UAL-RE/redata-commons]

	General

	A set of common modules, code, and external libraries used throughout
ReDATA codebases.

	redata-docs [https://github.com/UAL-RE/redata-docs]

	Documentation

	The repository hosting the current pages you are viewing on Read The Docs

	redata-iac [https://github.com/UAL-RE/redata-iac]

	IaC

	Repository containing Infrastructure as Code (IaC) and scripts used on the
operational side of ReDATA

Repositories details

More details about each repository:

	Software name

	Tag version

	Changelog

	Documentation

	Main branch

	PyPI

	LD-Cool-P [https://github.com/UAL-RE/LD-Cool-P]

	[image: LD-Cool-P GitHub tag version] [https://github.com/UAL-RE/LD-Cool-P/releases/latest]

	CHANGELOG [https://github.com/UAL-RE/LD-Cool-P/blob/master/CHANGELOG.md]

	README [https://github.com/UAL-RE/LD-Cool-P/blob/master/README.md]

	master

	TBD

	ReBACH [https://github.com/UAL-RE/ReBACH]

	N/A

	TBC

	README [https://github.com/UAL-RE/ReBACH/blob/main/README.md]

	main

	TBD

	ReQUIAM [https://github.com/UAL-RE/ReQUIAM]

	[image: ReQUIAM GitHub tag version] [https://github.com/UAL-RE/ReQUIAM/releases/latest]

	CHANGELOG [https://github.com/UAL-RE/ReQUIAM/blob/master/CHANGELOG.md]

	RTD [https://requiam.readthedocs.io]

	master

	N/A

	ReQUIAM_csv [https://github.com/UAL-RE/ReQUIAM_csv]

	[image: ReQUIAM_csv GitHub tag version] [https://github.com/UAL-RE/ReQUIAM_csv/releases/latest]

	TBC

	RTD [https://requiam-csv.readthedocs.io]

	master

	N/A

	figshare [https://github.com/UAL-RE/figshare]

	[image: figshare GitHub tag version] [https://github.com/UAL-RE/figshare/releases/latest]

	N/A

	N/A

	master

	N/A

	ldcoolp-figshare [https://github.com/UAL-RE/ldcoolp-figshare]

	[image: ldcoolp-figshare GitHub tag version] [https://github.com/UAL-RE/ldcoolp-figshare/releases/latest]

	CHANGELOG [https://github.com/UAL-RE/ldcoolp-figshare/blob/main/CHANGELOG.md]

	RTD [https://ldcoolp-figshare.readthedocs.io]

	main

	ldcoolp-figshare [https://pypi.org/project/ldcoolp-figshare]

	redata-commons [https://github.com/UAL-RE/redata-commons]

	[image: redata-commons GitHub tag version] [https://github.com/UAL-RE/redata-commons/releases/latest]

	CHANGELOG [https://github.com/UAL-RE/redata-commons/blob/main/CHANGELOG.md]

	RTD [https://redata-commons.readthedocs.io]

	main

	redata [https://pypi.org/project/redata]

	redata-docs [https://github.com/UAL-RE/redata-docs]

	[image: redata-docs GitHub tag version] [https://github.com/UAL-RE/redata-docs/releases/latest]

	N/A

	RTD [https://redata.readthedocs.io]

	main

	N/A

	redata-iac [https://github.com/UAL-RE/redata-iac]

	[image: redata-iac GitHub tag version] [https://github.com/UAL-RE/redata-iac/releases/latest]

	TBC

	N/A

	master

	N/A

Repositories status

Below summarizes open and closed issues and pull requests.

	Software name

	Open and closed issues

	Pull requests

	LD-Cool-P [https://github.com/UAL-RE/LD-Cool-P]

	[image: LD-Cool-P GitHub open issues] [https://github.com/UAL-RE/LD-Cool-P/issues?q=is:open%20is:issue] [image: LD-Cool-P Github closed issues] [https://github.com/UAL-RE/LD-Cool-P/issues?q=is:closed%20is:issue]

	[image: LD-Cool-P GitHub open PRs] [https://github.com/UAL-RE/LD-Cool-P/pulls?q=is:open] [image: LD-Cool-P Github closed PRs] [https://github.com/UAL-RE/LD-Cool-P/pulls?q=is:closed]

	ReBACH [https://github.com/UAL-RE/ReBACH]

	[image: ReBACH GitHub open issues] [https://github.com/UAL-RE/ReBACH/issues?q=is:open%20is:issue] [image: ReBACH Github closed issues] [https://github.com/UAL-RE/ReBACH/issues?q=is:closed%20is:issue]

	[image: ReBACH GitHub open PRs] [https://github.com/UAL-RE/ReBACH/pulls?q=is:open] [image: ReBACH Github closed PRs] [https://github.com/UAL-RE/ReBACH/pulls?q=is:closed]

	ReQUIAM [https://github.com/UAL-RE/ReQUIAM]

	[image: ReQUIAM GitHub open issues] [https://github.com/UAL-RE/ReQUIAM/issues?q=is:open%20is:issue] [image: ReQUIAM Github closed issues] [https://github.com/UAL-RE/ReQUIAM/issues?q=is:closed%20is:issue]

	[image: ReQUIAM GitHub open PRs] [https://github.com/UAL-RE/ReQUIAM/pulls?q=is:open] [image: ReQUIAM Github closed PRs] [https://github.com/UAL-RE/ReQUIAM/pulls?q=is:closed]

	ReQUIAM_csv [https://github.com/UAL-RE/ReQUIAM_csv]

	[image: ReQUIAM_csv GitHub open issues] [https://github.com/UAL-RE/ReQUIAM_csv/issues?q=is:open%20is:issue] [image: ReQUIAM_csv Github closed issues] [https://github.com/UAL-RE/ReQUIAM_csv/issues?q=is:closed%20is:issue]

	[image: ReQUIAM_csv GitHub open PRs] [https://github.com/UAL-RE/ReQUIAM_csv/pulls?q=is:open] [image: ReQUIAM_csv Github closed PRs] [https://github.com/UAL-RE/ReQUIAM_csv/pulls?q=is:closed]

	figshare [https://github.com/UAL-RE/figshare]

	N/A

	N/A

	ldcoolp-figshare [https://github.com/UAL-RE/ldcoolp-figshare]

	[image: ldcoolp-figshare GitHub open issues] [https://github.com/UAL-RE/ldcoolp-figshare/issues?q=is:open:%20is:issue] [image: ldcoolp-figshare GitHub closed issues] [https://github.com/UAL-RE/ldcoolp-figshare/issues?q=is:closed%20is:issue]

	[image: ldcoolp-figshare GitHub open PRs] [https://github.com/UAL-RE/ldcoolp-figshare/pulls?q=is:open] [image: ldcoolp-figshare GitHub closed PRs] [https://github.com/UAL-RE/ldcoolp-figshare/pulls?q=is:closed]

	redata-commons [https://github.com/UAL-RE/redata-commons]

	[image: redata-commons GitHub open issues] [https://github.com/UAL-RE/redata-commons/issues?q=is:open%20is:issue] [image: redata-commons GitHub closed issues] [https://github.com/UAL-RE/redata-commons/issues?q=is:closed%20is:issue]

	[image: redata-commons GitHub open PRs] [https://github.com/UAL-RE/redata-commons/pulls?q=is:open] [image: redata-commons GitHub closed PRs] [https://github.com/UAL-RE/redata-commons/pulls?q=is:closed]

	redata-docs [https://github.com/UAL-RE/redata-docs]

	[image: redata-docs GitHub open issues] [https://github.com/UAL-RE/redata-docs/issues?q=is:open%20is:issue] [image: redata-docs GitHub closed issues] [https://github.com/UAL-RE/redata-docs/issues?q=is:closed%20is:issue]

	[image: redata-docs GitHub open PRs] [https://github.com/UAL-RE/redata-docs/pulls?q=is:open] [image: redata-docs GitHub closed PRs] [https://github.com/UAL-RE/redata-docs/pulls?q=is:closed]

	redata-iac [https://github.com/UAL-RE/redata-iac]

	[image: redata-iac GitHub open issues] [https://github.com/UAL-RE/redata-iac/issues?q=is:open%20is:issue] [image: redata-iac GitHub closed issues] [https://github.com/UAL-RE/redata-iac/issues?q=is:closed%20is:issue]

	[image: redata-iac GitHub open PRs] [https://github.com/UAL-RE/redata-iac/pulls?q=is:open] [image: redata-iac GitHub closed PRs] [https://github.com/UAL-RE/redata-iac/pulls?q=is:closed]

Project Management

An Overview

We utilize git and GitHub extensively for version control and project management. This is crucial since we must
keep track of hundreds of bugs, improvements, and changes for several
repositories.

We use GitHub tools to track and implement changes to the software. First, we
use GitHub issues [https://guides.github.com/features/issues/] to identify and track bugs/issues/features, and
GitHub pull requests [https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests] or “PR” so that a developer can suggest a set of
changes to be merged into the main/master branch. Within these
issue and PR tracking, we use labels to indicate what these changes/problems
pertain to. Each repository has a set of labels. Labels are helpful to
understand scope and impact and aids in GitHub search engine optimization.
To understand the scope of any work, we use GitHub milestone tracking.
Finally, we use GitHub project boards [https://docs.github.com/en/issues/organizing-your-work-with-project-boards/managing-project-boards/about-project-boards] to illustrate and manage issues and
PRs. Each repository has its own project board. These are kanban style boards
with several columns/lists.

DevOps workflow

The general workflow are as follow when starting any improvement:

	Create a new GitHub issue if one does not exist. Begin tracking it in the
project board

	Create a new branch locally

	Commit changes to branch and push them to the new branch on the remote
repository (i.e. GitHub)

	Create a PR within the repository to merge the new branch into the main/master branch

	A team member reviews the PR (if enough developers are on staff).
Self-review are OK if staff is limited.

	The changes are merged into the main/master branch and any
associated tags are pushed to the remote repository

	The software is manually deployed

Note: The default branch name is set to “main” starting Oct 1, 2020, not “master” anymore.
For more info: please see Github rename master to main [https://github.com/github/renaming] . Certain repositories still have default branch as “master”.

Branching

It is strongly recommended to use git branches for software development.
This is because, at any point, multiple features/bugs are being addressed,
and changes pushed directly to the main branch could break the software if
it is untested or has not been reviewed. Branching is a common Developer
+ Operations (“DevOps”) best practice. To create a new git branch, use
the following git commands: (-b is to create a new branch)

$ git pull origin main
$ git checkout -b <new-branch>

To checkout an existing branch:

$ git branch # To see existing branches
$ git checkout <branchname>

In terms of branch names, it is strongly recommended to name branches so it
is clear and concise. We strongly recommend including:

	The GitHub issue number

	Whether it is a feature/enhancement or a bug fix

	A short description

The above ensures an easier understanding to the software development team.
Examples include:

	feature/235_preserve_prep for LD-Cool-P#235 [https://github.com/UAL-RE/LD-Cool-P/issues/235]

	hotfix/229_400_error for LD-Cool-P#229 [https://github.com/UAL-RE/LD-Cool-P/issues/229]

	chore/242_gitignore for LD-Cool-P#242 [https://github.com/UAL-RE/LD-Cool-P/issues/242]

Note: Our branching model initially followed a git-flow workflow with
features, hotfixes, and releases; however, we later moved away from that
model and now use a GitHub flow workflow where all changes are merged into
the main/master branch after review and testing.

Pushing to a remote branch

After updating files, we can push the changes to remote branch. It is important to push to a branch (not main) so that a team member can review the changes over a pull request.
use the following git commands:

$ git add .
$ git commit -m "<message>"
$ git branch # list all the branches and * is the current branch
$ git push origin <branchname> # push to a remote branch

In accordance with git’s best practices, the commit message should be short but descriptive.
Avoid general messages like “updated file.txt” when possible.

Versioning and tagging

Before creating a new tag, we need to make sure all related files updated to reflect the new tag.
These files shall be checked and updated if existing:

	Update __init__.py __version__ number or related configuration

	Update setup.py variables such as version.

	Review README.md and update related sentences.

	Update CHANGELOG.md by adding changelog message

In all of our software, we conduct version tagging.
Here, each new version refers to a change to the codebase that is to
be deployed. We loosely follow Semantic versioning [https://semver.org/] (SemVer), which
denotes changes as MAJOR (X), MINOR (Y), and PATCH (Z). There are two differences
with our method of versioning against SemVer:

	We use the patch denotation for both hotfixes and small enhancements
to software.

	We use MINOR denotation for large/larger enhancements (e.g. a completely
new feature rather than an improvement to an existing feature).

MAJOR remains the same, for incompatible API changes. We try to avoid the
latter as much as possible.

While some open-source software teams may not use version tagging, there are
many advantages. First, this step ensures that we have continuous delivery
of our software. Second, for some of our software, we automatically deploy
them on PyPI [https://pypi.org], a python package manager that allows for easy
installation of the software. Finally, our logging tools records version
information for each software, so this allows the team to trace an issue
back to a specific PR. To tag a specific commit:

$ git tag vX.Y.Z -m "message"
$ git tag

Note: X is the MAJOR version, Y is the MINOR version, Z is the PATCH version

You will then push one tag via:

$ git push origin <tag_name>

Note: It is NOT recommended to use “$git push –tags” because the command push all tags.
It is common for developers to have old or “bad” tags in their local repositories. So it’s advised
to only explicitly push a tag using the above command.

Merging code

Direct merges to main/master branches are to be avoided. When working collaboratively, all changes must be made to a branch and a pull request opened. The pull request must be reviewed and approved by another team member before being merged to the main/master branch.

Milestone tracking

More details needed here.

Status of GitHub repositories

See Repositories status

Identity and Access Management

IAM Overview

Our Figshare for Institution instance, has a couple of features to maintain
identity and access management (IAM) settings and to assist in data
repository administration.

First, we have the ability to set a quota of available space for each user.
Our default quotas, applicable to most ReDATA users, are:

	Classification

	Quota

	Undergraduates

	0 (initially), 100MB after they contact us

	Graduates

	0.5 GB

	Faculty/Staff/DCC

	2 GB

Second, we have the ability to assign each users to groups on Figshare
(a.k.a. “portals”). This allows for the easily exploration of data through
these portals. For our deployment we chose to do it by following common
research themes for our University. To identify researcher’s discipline, we
utilize their primary affiliation at the University.

Software/Services Overview

There are a number of software and services that we use for IAM. They are:

	Software/Services

	Maintainer(s)

	Purpose

	Enterprise Directory Service (EDS)

	UITS

	UArizona’s LDAP directory used to gather metadata
about their users from a central UA datastore in order
to make authorization decisions.

	Grouper

	UITS

	UArizona’s tool to create groups for UA organization.
This is populated into EDS and Shibboleth

	Shibboleth / WebAuth

	UITS

	UArizona’s SAML-based access to UA IAM information

	ReQUIAM [https://github.com/UAL-RE/ReQUIAM]

	ReDATA team

	Python command-line API for IAM

	ReQUIAM_csv [https://github.com/UAL-RE/ReQUIAM_csv]

	ReDATA team

	Python command-line API and database of groups for IAM

Services

First, we utilize three services provided and administered by University
Information Technology Services (UITS):

	EDS

	Shibboleth

	Grouper

Users who login to ReDATA uses their NetID [https://netid.arizona.edu] credentials to login (WebAuth).
A user who is no longer part of the University will not have NetID [https://netid.arizona.edu] and
thus will not be able to log in.

Software

The two codebases that the ReDATA team develops and maintains are
ReQUIAM [https://github.com/UAL-RE/ReQUIAM] and ReQUIAM_csv [https://github.com/UAL-RE/ReQUIAM_csv]. The
former is the primary software that manages all ReDATA IAM with a
daily “cronjob” that sets research theme association (“portals”) and quotas
through the Grouper API. That information is then propagated into EDS
and Shibboleth with users logging in. Also, ReQUIAM has a
command-line API to enable other manual IAM changes for the ReDATA team,
such as setting a higher quota from default quota settings
(See IAM Overview)

The ReQUIAM_csv software contains the mapping between the groups on
ReDATA’s Figshare for Institution instance and UArizona organizational
codes. The spreadsheet is available through Google Docs [https://docs.google.com/spreadsheets/d/1f8tNxj96g_4NW6LWAIx8s3AxRoBbwRvFIxUXMAYyVlU/edit#gid=1301862342].

The Grouper-to-Figshare-group mapping is provided as a CSV file to be
consumed by ReQUIAM, which are publicly available on GitHub at:

	Raw version [https://raw.githubusercontent.com/UAL-RE/ReQUIAM_csv/master/requiam_csv/data/research_themes.csv]

	Rendered version [https://github.com/UAL-RE/ReQUIAM_csv/blob/master/requiam_csv/data/research_themes.csv]

Grouper settings

To control IAM, we update Grouper group memberships, which are metadata that
is passed into EDS and ultimately Shibboleth and consumed by our Figshare for
Institution instance for account creation (for first login) and update when
users re-login. This metadata record is called ismemberof.

The three ismemberof settings that ensures proper IAM are:

	ismemberof

	Type

	Purpose

	active

	Group

	This enable login to ReDATA. Non-membership means the individual
is no longer an active member by Libraries privileges

	portal

	Stem

	Folder containing various research themes Grouper groups

	quota

	Stem

	Folder containing Grouper groups of quotas in bytes

The Grouper stem prefix for the above is arizona.edu:Dept:LBRY:figshare.

ReQUIAM maintains direct membership for portal and quota groups.
For the active group, this is done using indirect membership from
other Grouper groups set by the University Libraries patron software,
patron-groups [https://github.com/ualibraries/patron-groups].

Our Figshare instance maps the portal and quota settings accordingly
such that:

	A quota is set to ensure that a user has enough space for small deposits,
which is most often the case. The user can request more space, which
a ReDATA administrator would need to approve. The latter allows for
the ReDATA team to understand the user’s needs and to identify cases where
there are large deposits requiring more assistance.

	A researcher’s data deposits are placed in a proper Figshare group/portal.

If a user does not have a portal set then their data publication will not
appear in any group/portal, but part of the University wide group. If a quota
is not set (for undergraduates logging in for the first time), then the quota
is set to zero.

Index

 _static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to ReDATA’s documentation!

 		
 Repositories Overview

 		
 Repositories purposes

 		
 Repositories details

 		
 Repositories status

 		
 Project Management

 		
 An Overview

 		
 DevOps workflow

 		
 Branching

 		
 Pushing to a remote branch

 		
 Versioning and tagging

 		
 Merging code

 		
 Milestone tracking

 		
 Status of GitHub repositories

 		
 Identity and Access Management

 		
 IAM Overview

 		
 Software/Services Overview

 		
 Services

 		
 Software

 		
 Grouper settings

_static/minus.png

_static/file.png

