

Welcome to ReDATA’s documentation!

Overview

This ReadTheDocs landing page provides general documentation for software pertaining
to ReDATA [https://arizona.figshare.com], the University of Arizona Research Data Repository.

The GitHub repository is available here [https://github.com/UAL-RE/redata-docs/].

All ReDATA-related repositories are under the GitHub organization (UAL-RE) [https://github.com/UAL-RE/] of
Research Engagement, University of Arizona Libraries

Unless indicated, all software are under an MIT License.

Contents:

	Repositories Overview
	Repositories purposes

	Repositories details

	Repositories status

	Project Management
	An Overview

	DevOps workflow

	Branching

	Versioning and tagging

	Merging code

	Milestone tracking

	Status of GitHub repositories

Indices and tables

	Index

	Search Page

Repositories Overview

Repositories purposes

	Our codebases fall in one of six categories:
	
	Common/general software used throughout ReDATA codebases

	Documentation

	Identity and access management (IAM)

	Data curation

	Data preservation

	Infrastructure as Code (IaC)

	Software name

	Category

	Purpose

	LD-Cool-P [https://github.com/UAL-RE/LD-Cool-P]

	Curation

	Python command-line API for data curation

	ReBACH [https://github.com/UAL-RE/ReBACH]

	Preservation

	Software to support data preservations with Dart and other tools

	ReQUIAM [https://github.com/UAL-RE/ReQUIAM]

	IAM

	Python command-line API for IAM

	ReQUIAM_csv [https://github.com/UAL-RE/ReQUIAM_csv]

	IAM

	Python command-line API and database of groups for IAM

	figshare [https://github.com/UAL-RE/figshare]

	Curation,
Preservation

	A forked copy of cognoma’s [https://github.com/cognoma/figshare] repository used to gather
public/private data from Figshare API

	ldcoolp-figshare [https://github.com/UAL-RE/ldcoolp-figshare]

	Curation

	Python backend API for access to the Figshare API for Figshare for
Institutions instances

	redata-commons [https://github.com/UAL-RE/redata-commons]

	General

	A set of common modules, code, and external libraries used throughout
ReDATA codebases.

	redata-docs [https://github.com/UAL-RE/redata-docs]

	Documentation

	The repository hosting the current pages you are viewing on Read The Docs

	redata-iac [https://github.com/UAL-RE/redata-iac]

	IaC

	Repository containing Infrastructure as Code (IaC) and scripts used on the
operational side of ReDATA

Repositories details

More details about each repository:

	Software name

	Tag version

	Changelog

	Documentation

	Main branch

	PyPI

	LD-Cool-P [https://github.com/UAL-RE/LD-Cool-P]

	[image: LD-Cool-P GitHub tag version]

	CHANGELOG [https://github.com/UAL-RE/LD-Cool-P/blob/master/CHANGELOG.md]

	README [https://github.com/UAL-RE/LD-Cool-P/blob/master/README.md]

	master

	TBD

	ReBACH [https://github.com/UAL-RE/ReBACH]

	N/A

	TBC

	README [https://github.com/UAL-RE/ReBACH/blob/main/README.md]

	main

	TBD

	ReQUIAM [https://github.com/UAL-RE/ReQUIAM]

	[image: ReQUIAM GitHub tag version]

	README [https://github.com/UAL-RE/ReQUIAM/blob/master/README.md#changelog]

	README [https://github.com/UAL-RE/ReQUIAM/blob/master/README.md]

	master

	N/A

	ReQUIAM_csv [https://github.com/UAL-RE/ReQUIAM_csv]

	[image: ReQUIAM_csv GitHub tag version]

	TBC

	RTD [https://requiam-csv.readthedocs.io]

	master

	N/A

	figshare [https://github.com/UAL-RE/figshare]

	[image: figshare GitHub tag version]

	N/A

	N/A

	master

	N/A

	ldcoolp-figshare [https://github.com/UAL-RE/ldcoolp-figshare]

	[image: ldcoolp-figshare GitHub tag version]

	CHANGELOG [https://github.com/UAL-RE/ldcoolp-figshare/blob/main/CHANGELOG.md]

	RTD [https://ldcoolp-figshare.readthedocs.io]

	main

	ldcoolp-figshare [https://pypi.org/project/ldcoolp-figshare]

	redata-commons [https://github.com/UAL-RE/redata-commons]

	[image: redata-commons GitHub tag version]

	CHANGELOG [https://github.com/UAL-RE/redata-commons/blob/main/CHANGELOG.md]

	RTD [https://redata-commons.readthedocs.io]

	main

	redata [https://pypi.org/project/redata]

	redata-docs [https://github.com/UAL-RE/redata-docs]

	[image: redata-docs GitHub tag version]

	N/A

	RTD [https://redata.readthedocs.io]

	main

	N/A

	redata-iac [https://github.com/UAL-RE/redata-iac]

	[image: redata-iac GitHub tag version]

	TBC

	N/A

	master

	N/A

Repositories status

Below summarizes open and closed issues and pull requests.

	Software name

	Open and closed issues

	Pull requests

	LD-Cool-P [https://github.com/UAL-RE/LD-Cool-P]

	[image: LD-Cool-P GitHub open issues] [image: LD-Cool-P Github closed issues]

	[image: LD-Cool-P GitHub open PRs] [image: LD-Cool-P Github closed PRs]

	ReBACH [https://github.com/UAL-RE/ReBACH]

	[image: ReBACH GitHub open issues] [image: ReBACH Github closed issues]

	[image: ReBACH GitHub open PRs] [image: ReBACH Github closed PRs]

	ReQUIAM [https://github.com/UAL-RE/ReQUIAM]

	[image: ReQUIAM GitHub open issues] [image: ReQUIAM Github closed issues]

	[image: ReQUIAM GitHub open PRs] [image: ReQUIAM Github closed PRs]

	ReQUIAM_csv [https://github.com/UAL-RE/ReQUIAM_csv]

	[image: ReQUIAM_csv GitHub open issues] [image: ReQUIAM_csv Github closed issues]

	[image: ReQUIAM_csv GitHub open PRs] [image: ReQUIAM_csv Github closed PRs]

	figshare [https://github.com/UAL-RE/figshare]

	N/A

	N/A

	ldcoolp-figshare [https://github.com/UAL-RE/ldcoolp-figshare]

	[image: ldcoolp-figshare GitHub open issues] [image: ldcoolp-figshare GitHub closed issues]

	[image: ldcoolp-figshare GitHub open PRs] [image: ldcoolp-figshare GitHub closed PRs]

	redata-commons [https://github.com/UAL-RE/redata-commons]

	[image: redata-commons GitHub open issues] [image: redata-commons GitHub closed issues]

	[image: redata-commons GitHub open PRs] [image: redata-commons GitHub closed PRs]

	redata-docs [https://github.com/UAL-RE/redata-docs]

	[image: redata-docs GitHub open issues] [image: redata-docs GitHub closed issues]

	[image: redata-docs GitHub open PRs] [image: redata-docs GitHub closed PRs]

	redata-iac [https://github.com/UAL-RE/redata-iac]

	[image: redata-iac GitHub open issues] [image: redata-iac GitHub closed issues]

	[image: redata-iac GitHub open PRs] [image: redata-iac GitHub closed PRs]

Project Management

An Overview

For software development purposes, we utilize git and GitHub extensively
for version control and project management. This is crucial since we must
keep track of hundreds of bugs, improvements, and changes for several
repositories.

We use GitHub tools to track and implement changes to the software. First, we
use GitHub issues [https://guides.github.com/features/issues/] to identify and track bugs/issues/features, and
GitHub pull requests [https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests] or “PR” so that a developer can suggest a set of
changes to be merged into the master/main branch. Within these
issue and PR tracking, we use labels to indicate what these changes/problems
pertain to. Each repository has a set of labels. Labels are helpful to
understand scope and impact and aids in GitHub search engine optimization.
To understand the scope of any work, we use GitHub milestone tracking.
Finally, we use GitHub project boards [https://docs.github.com/en/issues/organizing-your-work-with-project-boards/managing-project-boards/about-project-boards] to illustrate and manage issues and
PRs. Each repository has its own project board. These are kanban style boards
with several columns/lists.

DevOps workflow

The general workflow are as follow when starting any improvement:

	Create a new GitHub issue if one does not exist. Begin tracking it in the
project board

	Create a new branch locally

	Commit changes to branch and push them to the new branch on the remote
repository (i.e. GitHub)

	Create a PR within the repository to merge the new branch into the
master/main branch

	A team member reviews the PR (if enough developers are on staff).
Self-review are OK if staff is limited.

	The changes are merged into the master/main branch and any
associated tags are pushed to the remote repository

	The software is manually deployed

Branching

It is strongly recommended to use git branches for software development.
This is because, at any point, multiple features/bugs are being addressed,
and changes pushed directly to the main branch could break the software if
it is untested or has not been reviewed. Branching is a common Developer
+ Operations (“DevOps”) best practice. To create a new git branch, use
the following git commands:

$ git pull master
$ git checkout -b <name_of_branch>

To checkout an existing branch:

$ git branch # To see existing branches
$ git checkout <name_of_branch>

In terms of branch names, it is strongly recommended to name branches so it
is clear and concise. We strongly recommend including:

	The GitHub issue number

	Whether it is a feature/enhancement or a bug fix

	A short description

The above ensures an easier understanding to the software development team.
Examples include:

	feature/235_preserve_prep for LD-Cool-P#235 [https://github.com/UAL-RE/LD-Cool-P/issues/235]

	hotfix/229_400_error for LD-Cool-P#229 [https://github.com/UAL-RE/LD-Cool-P/issues/229]

Note: Our branching model initially followed a git-flow workflow with
features, hotfixes, and releases; however, we later moved away from that
model and now use a GitHub flow workflow where all changes are merged into
the master/main branch after review and testing.

Versioning and tagging

In all of our software, we conduct version tagging.
Here, each new version refers to a change to the codebase that is to
be deployed. We loosely follow Semantic versioning [https://semver.org/] (SemVer), which
denotes changes as MAJOR, MINOR, and PATCH. There are two differences
with our method of versioning against SemVer:

	We use the patch denotation for both hotfixes and small enhancements
to software.

	We use MINOR denotation for large/larger enhancements (e.g. a completely
new feature rather than an improvement to an existing feature).

MAJOR remains the same, for incompatible API changes. We try to avoid the
latter as much as possible.

While some open-source software teams may not use version tagging, there are
many advantages. First, this step ensures that we have continuous delivery
of our software. Second, for some of our software, we automatically deploy
them on PyPI [https://pypi.org], a python package manager that allows for easy
installation of the software. Finally, our logging tools records version
information for each software, so this allows the team to trace an issue
back to a specific PR. To tag a specific commit:

$ git tag vX.Y.Z -m

A vim prompt will appear so you can provide a message for the tag. Often
a short message referring to the GitHub issue number will suffice.
You will then push the tag via:

$ git push --tags

Merging code

TBD on using git over GitHub merge tool.

Milestone tracking

More details needed here.

Status of GitHub repositories

See Repositories status

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to ReDATA’s documentation!

 		
 Repositories Overview

 		
 Repositories purposes

 		
 Repositories details

 		
 Repositories status

 		
 Project Management

 		
 An Overview

 		
 DevOps workflow

 		
 Branching

 		
 Versioning and tagging

 		
 Merging code

 		
 Milestone tracking

 		
 Status of GitHub repositories

_static/plus.png

_static/file.png

_static/minus.png

