
redata
Release v0.2.0

Chun Ly, UA Research Data Repository (ReDATA) Team

Jul 13, 2021

CONTENTS:

1 Overview 1
1.1 Repositories Overview . 1

1.1.1 Repositories purposes . 1
1.1.2 Repositories details . 2
1.1.3 Repositories status . 2

1.2 Project Management . 3
1.2.1 An Overview . 3
1.2.2 DevOps workflow . 3
1.2.3 Branching . 3
1.2.4 Versioning and tagging . 4
1.2.5 Merging code . 4
1.2.6 Milestone tracking . 4
1.2.7 Status of GitHub repositories . 4

2 Indices and tables 5

i

ii

CHAPTER

ONE

OVERVIEW

This ReadTheDocs landing page provides general documentation for software pertaining to ReDATA, the University
of Arizona Research Data Repository.

The GitHub repository is available here.

All ReDATA-related repositories are under the GitHub organization (UAL-RE) of Research Engagement, University
of Arizona Libraries

Unless indicated, all software are under an MIT License.

1.1 Repositories Overview

1.1.1 Repositories purposes

Our codebases fall in one of six categories:

1. Common/general software used throughout ReDATA codebases

2. Documentation

3. Identity and access management (IAM)

4. Data curation

5. Data preservation

6. Infrastructure as Code (IaC)

1

https://arizona.figshare.com
https://github.com/UAL-RE/redata-docs/
https://github.com/UAL-RE/

redata, Release v0.2.0

Software
name

Category Purpose

LD-Cool-P Curation Python command-line API for data curation
ReBACH Preservation Software to support data preservations with Dart and other tools
ReQUIAM IAM Python command-line API for IAM
Re-
QUIAM_csv

IAM Python command-line API and database of groups for IAM

figshare Curation, Preser-
vation

A forked copy of cognoma’s repository used to gather public/private data from
Figshare API

ldcoolp-
figshare

Curation Python backend API for access to the Figshare API for Figshare for Institutions
instances

redata-
commons

General A set of common modules, code, and external libraries used throughout Re-
DATA codebases.

redata-docs Documentation The repository hosting the current pages you are viewing on Read The Docs
redata-iac IaC Repository containing Infrastructure as Code (IaC) and scripts used on the op-

erational side of ReDATA

1.1.2 Repositories details

More details about each repository:

Software name Tag version Changelog Documentation Main branch PyPI
LD-Cool-P CHANGELOG README master TBD
ReBACH N/A TBC README main TBD
ReQUIAM README README master N/A
ReQUIAM_csv TBC RTD master N/A
figshare N/A N/A master N/A
ldcoolp-figshare CHANGELOG RTD main ldcoolp-figshare
redata-commons CHANGELOG RTD main redata
redata-docs N/A RTD main N/A
redata-iac TBC N/A master N/A

1.1.3 Repositories status

Below summarizes open and closed issues and pull requests.

Software name Open and closed issues Pull requests
LD-Cool-P
ReBACH
ReQUIAM
ReQUIAM_csv
figshare N/A N/A
ldcoolp-figshare
redata-commons
redata-docs
redata-iac

2 Chapter 1. Overview

https://github.com/UAL-RE/LD-Cool-P
https://github.com/UAL-RE/ReBACH
https://github.com/UAL-RE/ReQUIAM
https://github.com/UAL-RE/ReQUIAM_csv
https://github.com/UAL-RE/ReQUIAM_csv
https://github.com/UAL-RE/figshare
https://github.com/cognoma/figshare
https://github.com/UAL-RE/ldcoolp-figshare
https://github.com/UAL-RE/ldcoolp-figshare
https://github.com/UAL-RE/redata-commons
https://github.com/UAL-RE/redata-commons
https://github.com/UAL-RE/redata-docs
https://github.com/UAL-RE/redata-iac
https://github.com/UAL-RE/LD-Cool-P
https://github.com/UAL-RE/LD-Cool-P/blob/master/CHANGELOG.md
https://github.com/UAL-RE/LD-Cool-P/blob/master/README.md
https://github.com/UAL-RE/ReBACH
https://github.com/UAL-RE/ReBACH/blob/main/README.md
https://github.com/UAL-RE/ReQUIAM
https://github.com/UAL-RE/ReQUIAM/blob/master/README.md#changelog
https://github.com/UAL-RE/ReQUIAM/blob/master/README.md
https://github.com/UAL-RE/ReQUIAM_csv
https://requiam-csv.readthedocs.io
https://github.com/UAL-RE/figshare
https://github.com/UAL-RE/ldcoolp-figshare
https://github.com/UAL-RE/ldcoolp-figshare/blob/main/CHANGELOG.md
https://ldcoolp-figshare.readthedocs.io
https://pypi.org/project/ldcoolp-figshare
https://github.com/UAL-RE/redata-commons
https://github.com/UAL-RE/redata-commons/blob/main/CHANGELOG.md
https://redata-commons.readthedocs.io
https://pypi.org/project/redata
https://github.com/UAL-RE/redata-docs
https://redata.readthedocs.io
https://github.com/UAL-RE/redata-iac
https://github.com/UAL-RE/LD-Cool-P
https://github.com/UAL-RE/ReBACH
https://github.com/UAL-RE/ReQUIAM
https://github.com/UAL-RE/ReQUIAM_csv
https://github.com/UAL-RE/figshare
https://github.com/UAL-RE/ldcoolp-figshare
https://github.com/UAL-RE/redata-commons
https://github.com/UAL-RE/redata-docs
https://github.com/UAL-RE/redata-iac

redata, Release v0.2.0

1.2 Project Management

1.2.1 An Overview

For software development purposes, we utilize git and GitHub extensively for version control and project management.
This is crucial since we must keep track of hundreds of bugs, improvements, and changes for several repositories.

We use GitHub tools to track and implement changes to the software. First, we use GitHub issues to identify and track
bugs/issues/features, and GitHub pull requests or “PR” so that a developer can suggest a set of changes to be merged into
the master/main branch. Within these issue and PR tracking, we use labels to indicate what these changes/problems
pertain to. Each repository has a set of labels. Labels are helpful to understand scope and impact and aids in GitHub
search engine optimization. To understand the scope of any work, we use GitHub milestone tracking. Finally, we use
GitHub project boards to illustrate and manage issues and PRs. Each repository has its own project board. These are
kanban style boards with several columns/lists.

1.2.2 DevOps workflow

The general workflow are as follow when starting any improvement:

1. Create a new GitHub issue if one does not exist. Begin tracking it in the project board

2. Create a new branch locally

3. Commit changes to branch and push them to the new branch on the remote repository (i.e. GitHub)

4. Create a PR within the repository to merge the new branch into the master/main branch

5. A team member reviews the PR (if enough developers are on staff). Self-review are OK if staff is limited.

6. The changes are merged into the master/main branch and any associated tags are pushed to the remote repository

7. The software is manually deployed

1.2.3 Branching

It is strongly recommended to use git branches for software development. This is because, at any point, multiple
features/bugs are being addressed, and changes pushed directly to the main branch could break the software if it is
untested or has not been reviewed. Branching is a common Developer + Operations (“DevOps”) best practice. To
create a new git branch, use the following git commands:

$ git pull master
$ git checkout -b <name_of_branch>

To checkout an existing branch:

$ git branch # To see existing branches
$ git checkout <name_of_branch>

In terms of branch names, it is strongly recommended to name branches so it is clear and concise. We strongly recom-
mend including:

1. The GitHub issue number

2. Whether it is a feature/enhancement or a bug fix

3. A short description

The above ensures an easier understanding to the software development team. Examples include:

1.2. Project Management 3

https://guides.github.com/features/issues/
https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/issues/organizing-your-work-with-project-boards/managing-project-boards/about-project-boards

redata, Release v0.2.0

1. feature/235_preserve_prep for LD-Cool-P#235

2. hotfix/229_400_error for LD-Cool-P#229

Note: Our branching model initially followed a git-flow workflow with features, hotfixes, and releases; however,
we later moved away from that model and now use a GitHub flow workflow where all changes are merged into the
master/main branch after review and testing.

1.2.4 Versioning and tagging

In all of our software, we conduct version tagging. Here, each new version refers to a change to the codebase that is
to be deployed. We loosely follow Semantic versioning (SemVer), which denotes changes as MAJOR, MINOR, and
PATCH. There are two differences with our method of versioning against SemVer:

1. We use the patch denotation for both hotfixes and small enhancements to software.

2. We use MINOR denotation for large/larger enhancements (e.g. a completely new feature rather than an improve-
ment to an existing feature).

MAJOR remains the same, for incompatible API changes. We try to avoid the latter as much as possible.

While some open-source software teams may not use version tagging, there are many advantages. First, this step ensures
that we have continuous delivery of our software. Second, for some of our software, we automatically deploy them on
PyPI, a python package manager that allows for easy installation of the software. Finally, our logging tools records
version information for each software, so this allows the team to trace an issue back to a specific PR. To tag a specific
commit:

$ git tag vX.Y.Z -m

A vim prompt will appear so you can provide a message for the tag. Often a short message referring to the GitHub
issue number will suffice. You will then push the tag via:

$ git push --tags

1.2.5 Merging code

TBD on using git over GitHub merge tool.

1.2.6 Milestone tracking

More details needed here.

1.2.7 Status of GitHub repositories

See Repositories status

4 Chapter 1. Overview

https://github.com/UAL-RE/LD-Cool-P/issues/235
https://github.com/UAL-RE/LD-Cool-P/issues/229
https://semver.org/
https://pypi.org

CHAPTER

TWO

INDICES AND TABLES

• genindex

• search

5

	Overview
	Repositories Overview
	Repositories purposes
	Repositories details
	Repositories status

	Project Management
	An Overview
	DevOps workflow
	Branching
	Versioning and tagging
	Merging code
	Milestone tracking
	Status of GitHub repositories

	Indices and tables

